试题
题目:
如图,正方形CEFG的对角线CF在正方形ABCD的边BC的延长线上(CE>BC),点M在CF上,且MF=AB,线段AF与DM交于点N.
(1)求证:DN=MN
(2)探究线段NG、MD的数量和位置关系,并加以证明.
答案
(1)证明:∵四边形ABCD是正方形,
∴AB=AD=CD,AD∥BF,
∴∠3=∠4,∠AND=∠FNM,
∵MF=AB,
∴AD=CD=MF,
∴△ADN≌△FMN,
∴DN=MN.
(2)GN⊥DM,DM=2GN.
证明:连接GD、GM,
∵四边形CEFG是正方形,
∴GC=GF,∠CGF=90°,∠GFM=∠GCF=45°,
∴∠DCG=45°,
∴∠DCG=∠GFM,
∵CD=MF,
∴△GDC≌△GMF
∴GD=GM,∠1=∠2,
∵∠2+∠CGM=90°,
∴∠1+∠CGM=90°
∴∠DGM=90°,
∵DN=MN.
∴GN⊥DM,DM=2GN.
(1)证明:∵四边形ABCD是正方形,
∴AB=AD=CD,AD∥BF,
∴∠3=∠4,∠AND=∠FNM,
∵MF=AB,
∴AD=CD=MF,
∴△ADN≌△FMN,
∴DN=MN.
(2)GN⊥DM,DM=2GN.
证明:连接GD、GM,
∵四边形CEFG是正方形,
∴GC=GF,∠CGF=90°,∠GFM=∠GCF=45°,
∴∠DCG=45°,
∴∠DCG=∠GFM,
∵CD=MF,
∴△GDC≌△GMF
∴GD=GM,∠1=∠2,
∵∠2+∠CGM=90°,
∴∠1+∠CGM=90°
∴∠DGM=90°,
∵DN=MN.
∴GN⊥DM,DM=2GN.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;直角三角形的性质.
(1)由已知条件CEFG的对角线CF在正方形ABCD的边BC的延长线上,可以知道AD∥BF,进而得到角相等证明△ADN≌△FMN,就可以得出结论.
(2)连接GD、GM,证明三角形全等可以得到△GDM是等腰直角三角形,且DN=MN,可以得出NG、MD的位置关系和数量关系.
本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质.
证明题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )