试题
题目:
如图,抛物线经过了边长为1的正方形ABOC的三个顶点A,B,C,则抛物线的解析式为
y=-
2
x
2
+
2
y=-
2
x
2
+
2
.
答案
y=-
2
x
2
+
2
解:连接BC,交OA于D,则BC⊥OA
在等腰Rt△OAB中,AB=1,∠BAO=∠AOB=45°
∴OA=
2
,OD=BD=CD=
2
2
∴A、B、C三点的坐标分别是(0,
2
)、(-
2
2
,
2
2
)、(
2
2
,
2
2
)
设过A、B、C三点的函数解析式y=ax
2
+bx+c,可得
c=
2
a-
2
2
b+c=
2
2
a+
2
2
b+c=
2
2
,解得
a=-
2
b=0
c=
2
所以抛物线的解析式为:y=-
2
x
2
+
2
.
考点梳理
考点
分析
点评
待定系数法求二次函数解析式;正方形的性质.
本题可先根据正方形的边长求出A、B、C三点的坐标,然后用待定系数法求出抛物线的解析式.
本题主要考查了二次函数解析式的确定以及正方形的性质,根据正方形的性质和边长求出A、B、C三点的坐标是解题的关键.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )