试题
题目:
如图是分别由两个具有公共顶点A的正方形组成的图形,且其中一个正方形的顶点在另一个正方形的边BC上(点D不与点B、C重合).则∠DCE=
135°
135°
.
答案
135°
解:作EH⊥BC于H,
∵正方形ABCN,正方形ADEM,
∴∠ADE=∠ABD=90°,
∴∠BAD+∠ADB=90°,∠EDH+∠ADB=90°,
∴∠EDH=∠BAD,
又∵AD=DE,∠DHE=∠DBA=90°,
∴△DEH≌△ABD,
∴EH=BD,DH=AB=BC,
∴CH=BD=EH,
∵∠DHE=90°,
∴∠ECH=45°,
∴∠DCE=135°.
故答案为135°.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
首先作辅助线EH⊥BC于H,通过求证△DEH≌△ABD,推出EH=BD,DH=AB=BC,即得,CH=BD=EH,由EH⊥BC,推出△ECH为等腰直角三角形,即得,∠ECH=45°,即可推出结论.
本题主要考查全等三角形的判定与性质、邻补角的性质、正方形的性质,关键在于根据已知推出△DEH≌△ABD,根据三角形全等推出△ECH为等腰直角三角形.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )