试题
题目:
已知相切两圆⊙O
1
的半径为1,⊙O
2
的半径为2,则圆心距O
1
O
2
长为( )
A.3
B.1
C.1.5
D.3或1
答案
D
解:当两圆外切时,则另一圆的半径=2+1=3;
当两圆内切时,则另一圆的半径=2-1=1.
则⊙O
2
的半径是3或1.
故选D.
考点梳理
考点
分析
点评
圆与圆的位置关系.
两圆相切时,有两种情况:内切和外切.两圆外切,则圆心距等于两圆半径之和;两圆内切,则圆心距等于两圆半径之差.
本题考查了两圆相切时,两圆的半径与圆心距的关系,注意有两种情况.
找相似题
(2013·孝感)下列说法正确的是( )
(2013·鄂尔多斯)下列说法中,正确的有( )
(1)
25
的平方根是±5.
(2)五边形的内角和是540°.
(3)抛物线y=3x
2
-x+4与x轴无交点.
(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm.
(5)若⊙O
1
与⊙O
2
的半径分别是方程x
2
-4x+3=0的两根,且O
1
O
2
=3,则两圆相交.
(2013·长沙)已知⊙O
1
的半径为1cm,⊙O
2
的半径为3cm,两圆的圆心距O
1
O
2
为4cm,则两圆的位置关系是( )
(2012·西藏)2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有( )
(2012·宿迁)若⊙O
1
,⊙O
2
的半径分别是r
1
=2,r
2
=4,圆心距d=5,则这两个圆的位置关系是( )