试题
题目:
直径分别为2和4的两圆相切,那么两圆的圆心距为
1或3
1或3
.
答案
1或3
解:当两圆外切时,则圆心距等于4÷2+2÷2=3;
当两圆内切时,则圆心距等于4÷2-2÷2=1.
故答案为:1或3
考点梳理
考点
分析
点评
圆与圆的位置关系.
两圆相切,则两圆外切或内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.
此题考查了两圆的位置关系与数量之间的联系.注意:两圆相切,则两圆内切或外切.
找相似题
(2013·孝感)下列说法正确的是( )
(2013·鄂尔多斯)下列说法中,正确的有( )
(1)
25
的平方根是±5.
(2)五边形的内角和是540°.
(3)抛物线y=3x
2
-x+4与x轴无交点.
(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm.
(5)若⊙O
1
与⊙O
2
的半径分别是方程x
2
-4x+3=0的两根,且O
1
O
2
=3,则两圆相交.
(2013·长沙)已知⊙O
1
的半径为1cm,⊙O
2
的半径为3cm,两圆的圆心距O
1
O
2
为4cm,则两圆的位置关系是( )
(2012·西藏)2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有( )
(2012·宿迁)若⊙O
1
,⊙O
2
的半径分别是r
1
=2,r
2
=4,圆心距d=5,则这两个圆的位置关系是( )