试题
题目:
(2012·宁波模拟)如图,梯形ABCD中,DC∥AB,点E是BC的中点,连接AE并延长与DC的延长线相交于点F,连接BF,AC.求证:四边形ABFC是平行四边形.
答案
证明:∵点E是BC的中点,
∴BE=CE,
又∵AB∥CD,
∴∠1=∠2,∠3=∠4,
∴△ABE≌△FCE,
∴AB=CF,
又∵梯形ABCD中 AB∥CD,
∴四边形ABFC是平行四边形.
证明:∵点E是BC的中点,
∴BE=CE,
又∵AB∥CD,
∴∠1=∠2,∠3=∠4,
∴△ABE≌△FCE,
∴AB=CF,
又∵梯形ABCD中 AB∥CD,
∴四边形ABFC是平行四边形.
考点梳理
考点
分析
点评
专题
梯形;平行四边形的判定.
根据点E是BC的中点即可求出BE=CE,又知AB∥CD,故可得∠1=∠2,∠3=∠4,于是证得△ABE≌△FCE,进一步得到AB=CF,结合梯形的知识即可证得四边形ABFC是平行四边形.
本题主要考查梯形、平行四边形及全等三角形的判定与性质,解答本题的关键是熟练掌握各种四边形的性质以及判定方法,此题难度不大.
证明题;压轴题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )