试题

题目:
青果学院(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为(  )



答案
B
青果学院解:延长AE交BC于F,
∵AE是∠BAD的平分线,
∴∠BAF=∠DAF,
∵AD∥CB,
∴∠DAF=∠AFB,
∴∠BAF=∠AFB,
∴AB=BF,
∵AB=
5
2
,BC=4,
∴CF=4-
5
2
=
3
2

∵AD∥BC,AE∥CD,
∴四边形AFCD是平行四边形,
∴AD=CF=
3
2

故选B.
考点梳理
梯形;等腰三角形的判定与性质.
延长AE交BC于F,根据角平分线的定义可得∠BAF=∠DAF,再根据两直线平行,内错角相等可得∠DAF=∠AFB,然后求出∠BAF=∠AFB,再根据等角对等边求出AB=BF,然后求出FC,根据两组对边平行的四边形是平行四边形得到四边形AFCD是平行四边形,然后根据平行四边形的对边相等解答.
本题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质,梯形的问题,关键在于准确作出辅助线.
压轴题.
找相似题