梯形;三角形中位线定理.
(1)先看题中给出的条件为何成立,由于三角形ADC,DMC,DBC都是同底,而由于AB∥DC,因此高相等,就能得出题中给出的结论,那么本题也要用高来求解,过A,M,B分别作BC的垂线AE,MN,BF,AE∥MN∥BF,由于M是AB中点,因此MN是梯形AEFB的中位线,因此MN=
(AE+BF),三个三角形同底因此结论①是成立的.
(2)本题可以利用AM=MB,让这两条边作底边来求解,三角形ADB中,小三角形的AB边上的高都相等,那么三角形ADM和DBM的面积就相等(等底同高),因此三角形OAD,OMD的和就等于三角形BMD的面积,同理三角形AOC和OMC的面积和等于三角形CMB的面积.根据这些等量关系即可得出题中三个三角形的面积关系.
本题主要考查了梯形中位线定理的应用,根据中位线或中点得出三角形的底相等或高成比例是解题的关键.
压轴题;探究型.