试题
题目:
(2003·陕西)如图,在梯形ABCD中,已知AD∥BC,BC=BD,AD=AB=4cm,∠A=120°,求梯形ABCD的面积.
答案
解:如图,作AE⊥BC于E,作DF⊥BC于F,
∴AE∥DF
又∵AD∥BC,且∠A=120°,
∴∠ABC=60°,AE=DF,
∵AB=AD=4,
∴∠ABD=∠ADB=∠DBC=30°
在Rt△ABE中,得AE=AB·cos30°=4×
3
2
=2
3
,
在Rt△BDF中,BD=2DF=2AE=4
3
∴BC=BD=4
3
∴S
梯形ABCD
=
1
2
(AD+BC)·AE=(12+4
3
)cm
2
.
解:如图,作AE⊥BC于E,作DF⊥BC于F,
∴AE∥DF
又∵AD∥BC,且∠A=120°,
∴∠ABC=60°,AE=DF,
∵AB=AD=4,
∴∠ABD=∠ADB=∠DBC=30°
在Rt△ABE中,得AE=AB·cos30°=4×
3
2
=2
3
,
在Rt△BDF中,BD=2DF=2AE=4
3
∴BC=BD=4
3
∴S
梯形ABCD
=
1
2
(AD+BC)·AE=(12+4
3
)cm
2
.
考点梳理
考点
分析
点评
梯形.
作梯形的高,根据等腰三角形的性质可以求得各个角的度数,作高后,进一步发现30度的直角三角形.根据30度的直角三角形的性质求得该梯形的高和下底,再根据面积进行计算.
本题考查与梯形有关的问题,作高是梯形中常见的辅助线方法之一,作好辅助线是关键.能够根据等腰三角形的性质和30度的直角三角形的性质求解.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )