试题
题目:
如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
(1)△ABE与△CDA全等吗?请说明理由;
(2)若∠DAC=40°,求∠EAC的度数.
答案
解:(1)△ABE与△CDA全等.
理由:在梯形ABCD中,
∵AD∥BC,AB=CD,
∴∠ABE=∠BAD,∠BAD=∠CDA,
∴∠ABE=∠CDA.
在△ABE和△CDA中,
AB=CD
∠ABE=∠D
BE=AD
,
∴△ABE≌△CDA(SAS).
(2)由(1)得:∠AEB=∠CAD,AE=AC,
∴∠AEB=∠ACE,
又∵∠DAC=40°,
∴∠AEB=∠ACE=40°,
∴∠EAC=180°-40°-40°=100°.
解:(1)△ABE与△CDA全等.
理由:在梯形ABCD中,
∵AD∥BC,AB=CD,
∴∠ABE=∠BAD,∠BAD=∠CDA,
∴∠ABE=∠CDA.
在△ABE和△CDA中,
AB=CD
∠ABE=∠D
BE=AD
,
∴△ABE≌△CDA(SAS).
(2)由(1)得:∠AEB=∠CAD,AE=AC,
∴∠AEB=∠ACE,
又∵∠DAC=40°,
∴∠AEB=∠ACE=40°,
∴∠EAC=180°-40°-40°=100°.
考点梳理
考点
分析
点评
梯形;全等三角形的判定与性质.
(1)由在梯形ABCD中,AD∥BC,AB=CD,易得∠ABE=∠D,又由BE=AD,利用SAS即可判定△ABE与△CDA全等;
(2)由(1),可得∠AEB=∠ACE,又由∠DAC=40°,即可求得∠EAC的度数.
此题考查了梯形的性质、全等三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )