试题
题目:
(2008·平谷区一模)如图,在梯形ABCD中,AD∥BC,E是梯形内一点,ED⊥AD,BE=DC,∠ECB=45°.
求证:∠EBC=∠EDC.
答案
证明:延长DE交BC于F.(1分)
∵AD∥BC,ED⊥AD,
∴EF⊥BC.(2分)
∴∠EFC=90°.
∵∠ECB=45°,
∴∠CEF=45°.
∴EF=FC.(3分)
∵BE=DC,∠EFC=∠EFB=90°,
∴△DFC≌△BFE.(4分)
∴∠EBC=∠EDC.(5分)
证明:延长DE交BC于F.(1分)
∵AD∥BC,ED⊥AD,
∴EF⊥BC.(2分)
∴∠EFC=90°.
∵∠ECB=45°,
∴∠CEF=45°.
∴EF=FC.(3分)
∵BE=DC,∠EFC=∠EFB=90°,
∴△DFC≌△BFE.(4分)
∴∠EBC=∠EDC.(5分)
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质.
延长DE交BC于F.根据SAS可以证明△DFC≌△BFE,从而得以证明.
此题综合考查了梯形的性质以及全等三角形的判定和性质.
证明题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )