试题
题目:
如图,梯形ABCD中,AD∥BC,AB=CD,∠ABC=72°,DE∥AB,将△DCE沿DE翻折,得到△DC′E,则∠EDC′=
36
36
度.
答案
36
解:∵平行移动腰AB至DE,
∴DE=AB=CD,
∴∠C=∠DEC=∠B=72°,∠EDC=180°-2∠C=36°,
由折叠的性质知:∠EDC'=∠EDC'=36°.
故答案为:36°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);梯形.
由折叠易得∠EDC′=∠EDC,根据平行及等腰梯形的性质可得DE=DC,那么∠C=∠DEC=∠B=72°,根据三角形内角和定理可得∠EDC的度数,也就求得了∠EDC′的度数.
此题考查了翻折变换及梯形的知识,解答本题的关键是得出DE=AB=CD,求出∠EDC的度数,难度一般.
数形结合.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )