试题
题目:
已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.
答案
证明:∵AE平分∠BAD,
∴∠BAE=∠DAE,…(1分)
在△BAE和△DAE中,
∵
AB=AD
∠BAE=∠DAE
AE=AE
,
∴△BAE≌△DAE(SAS)…(2分)
∴BE=DE,…(3分)
∵AD∥BC,
∴∠DAE=∠AEB,…(4分)
∴∠BAE=∠AEB,
∴AB=BE,…(5分)
∴AB=BE=DE=AD,…(6分)
∴四边形ABED是菱形.…(7分)
证明:∵AE平分∠BAD,
∴∠BAE=∠DAE,…(1分)
在△BAE和△DAE中,
∵
AB=AD
∠BAE=∠DAE
AE=AE
,
∴△BAE≌△DAE(SAS)…(2分)
∴BE=DE,…(3分)
∵AD∥BC,
∴∠DAE=∠AEB,…(4分)
∴∠BAE=∠AEB,
∴AB=BE,…(5分)
∴AB=BE=DE=AD,…(6分)
∴四边形ABED是菱形.…(7分)
考点梳理
考点
分析
点评
专题
菱形的判定;全等三角形的判定与性质;梯形.
首先证明△BAE≌△DAE,可得BE=DE,再证明∠BAE=∠AEB,可得AB=BE,进而得到AB=BE=DE=AD,根据四条边都相等的四边形是菱形可以判定出四边形ABED是菱形.
此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形
证明题;压轴题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )