梯形;等腰三角形的判定与性质;等边三角形的判定.
(1)根据等腰梯形同一底上的两底角相等求出∠ABC=∠A=60°,再根据角平分线的定义求出∠ABD=∠CBD=30°,根据两直线平行,内错角相等求出∠CDB=30°,从而得到∠CBD=∠CDB,再根据等角对等边的性质求出CB=CD,然后根据等腰三角形三线合一的性质可得F为BD的中点;
(2)根据直角三角形斜边上的中线等于斜边的一半可得DF=BF=EF,再根据直角三角形两锐角互余求出∠BDE=60°,然后根据有一个角是60°的等腰三角形是等边三角形证明.
本题考查了等腰梯形的性质,角平分线定义,两直线平行内错角相等的性质,以及等腰三角形三线合一的性质,等边三角形的判定,根据角的度数的相等求出相等的角是解题的关键.
证明题.