试题
题目:
如图,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE.求证:AD+BC=DC.
答案
证明:延长DE交CB的延长线于F,
∵AD∥CF,
∴∠A=∠ABF,∠ADE=∠F.
在△AED与△BEF中,
∠A=∠ABF
AE=BE
∠ADE=∠F
,
∴△AED≌△BEF,
∴AD=BF,DE=EF,
∵CE⊥DF,
∴CD=CF=BC+BF,
∴AD+BC=DC.
证明:延长DE交CB的延长线于F,
∵AD∥CF,
∴∠A=∠ABF,∠ADE=∠F.
在△AED与△BEF中,
∠A=∠ABF
AE=BE
∠ADE=∠F
,
∴△AED≌△BEF,
∴AD=BF,DE=EF,
∵CE⊥DF,
∴CD=CF=BC+BF,
∴AD+BC=DC.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质.
延长DE交CB的延长线于F,可证得△AED≌△BEF,根据三线合一的性质可得出CD=CF,进而利用等线段的代换可证得结论.
本题考查梯形的知识,因为点E是中点,所以应该联想到构造全等三角形,这是经常用到的解题思路,同学们要注意掌握.
证明题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )