试题
题目:
如图,梯形ABCD中,AD∥BC,DE∥AB交BC于点E,△CDE的周长为12cm,梯形ABCD的周长为20cm,则上底AD的长为
4
4
cm.
答案
4
解:∵AD∥BC,AB∥DE,
∴四边形ADEB是平行四边形,从而可得AB=DE,AD=BE,
故ABCD的周长可表示为:AD+AB+BE+EC+DC=2AD+DE+EC+CD=20,
∴2AD=20-12=8,
∴AD=4cm,
故答案为:4.
考点梳理
考点
分析
点评
梯形.
由题意可得出四边形ADEB是平行四边形,从而可得AB=DE=DC,从而ABCD的周长可转化为2AD+三角形DEC的周长,代入可得出答案.
本题考查等腰梯形的性质,对本题而言,关键是判断出四边形ADEB是平行四边形,从而根据平行四边形对边相等的性质将梯形的周长转化为2AD+三角形DEC的周长.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )