试题
题目:
(2010·玉溪模拟)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是
2
2
.
答案
2
解:如图,过F作FE⊥CB于E,过M作BM⊥CD于M,
连接BF,CF,
∵AB∥DC,∠D=90°,AD=DC=4,AB=1,
并且F为AD的中点,
∴BF=
5
,CF=2
5
,
而CM=CD-AB=3,BM=4,
∴CB=5,
又∵
5
2
+
(2
5
)
2
=
5
2
,
∴△BFC是直角三角形,
∴S
△BFC
=
1
2
BF×CF=
1
2
BC×EF,
∴BF×CF=EF×BC,
∴EF=2.
也可以利用面积法计算!
考点梳理
考点
分析
点评
专题
梯形;勾股定理.
如图,过F作FE⊥CB于E,过M作BM⊥CD于M,连接BF,CF,根据勾股定理可以分别求出BF,CF,根据已知条件知道BM=4,CM=3,利用勾股定理可以求出CB,再利用勾股定理的逆定理即可证明△BFC是直角三角形,再利用三角形的面积公式即可求出EF,即点F到BC的距离.
此题主要考查了梯形的性质和勾股定理及其逆定理的应用,还考查了三角形的面积公式,综合性比较强.
压轴题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )