试题
题目:
(2004·宿迁)如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,则EF=
1
1
.
答案
1
解:过点E作AB、CD的平行线,与BC分别交于G,H,
∵∠B+∠C=90°,
∴∠EGH=∠B,∠EHG=∠C,
∴∠EGH+∠EHG=90°,
∴四边形ABGE和四边形CDEH都是平行四边形,△EGH为直角三角形,
∵E、F分别是AD、BC的中点,
∴BG=CH=0.5,GH=2,
根据直角三角形中斜边上的中线是斜边的一半知,
EF=
1
2
GH=1,
∴EF=1.
考点梳理
考点
分析
点评
专题
梯形.
根据已知条件,过点E作AB、CD的平行线与BC分别相交G,H,根据直角三角形的性质可求得GH的长,从而就得到了EF的长.
本题通过作辅助线,利用直角三角形的斜边上的中线的性质求解.
压轴题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )