试题
题目:
(2011·宿迁)如图,在梯形ABCD中,AB∥DC,∠ADC的平分线与∠BCD的平分线的交点E恰在AB上.若AD=7cm,BC=8cm,则AB的长度是
15
15
cm.
答案
15
解:∵∠ADC的平分线与∠BCD的平分线的交点E恰在AB上,
∴∠1=∠2,∠3=∠4,
∵AB∥DC,
∴∠2=∠5,∠3=∠6,
∴∠1=∠5,∠4=∠6,
∴AE=AD,BE=BC,
∵AD=7cm,BC=8cm,
∴AB=AE+BE=AD+BC=7+8=15(cm).
故答案为:15.
考点梳理
考点
分析
点评
专题
梯形;等腰三角形的判定与性质.
由角平分线的性质与平行线的性质,易证得△ADE与△BEC是等腰三角形,即AE=AD,BE=BC,又由AD=7cm,BC=8cm,则可求得AB的长度.
此题考查了梯形的性质,平行线的性质以及角平分线的定义.此题难度不大,注意有平行线与角平分线出现,一般会有等腰三角形出现.
压轴题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )