试题
题目:
如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=100°,则∠D=( )
A.140°
B.130°
C.110°
D.100°
答案
A
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠BAD=100°
∠B=80°,
∵AC=BC,
∴∠B=∠BAC=80°,
∴∠DAC=100°-80°=20°,
∵AD=DC,
∴∠DAC=∠DCA=20°,
∴∠D=180°-∠DAC-∠DCA=140°,
故选A.
考点梳理
考点
分析
点评
专题
梯形;平行线的性质;三角形内角和定理;等腰三角形的性质.
根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.
本题主要考查对梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.
计算题.
找相似题
(2013·宁波)如图,梯形ABCD中,AD∥BC,AB=
5
2
,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )
(2011·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,则梯形另外两个底角的度数分别是( )
(2010·台州)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )
(2010·内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )