试题
题目:
如图,在梯形ABCD中,AD∥BC,AB=CD,延长CB至点E,使EB=AD,连接AE.
(1)求证:AE=AC;
(2)若AC平分∠BCD,AC⊥AB,试探究线段BC与AD之间的数量关系?请说明理由.
答案
解:(1)连接BD,
∵AD∥BC,EB=AD,
∴四边形ADBE为平行四边形,
∴AE=BD,
∵梯形ABCD是等腰梯形,
∴AC=BD,
∴AE=AC;
(2)∵AD∥BC,AC平分∠BCD,
∴∠ACB=∠DCA=∠DAC,
∴AD=CD=AB,
∵梯形ABCD是等腰梯形,
∴∠ABC=∠BCD=2∠ACB,
∴∠ACB+∠ABC=3∠ACB=90°,
∴∠ACB=30°,
∴BC=2AB=2AD.
解:(1)连接BD,
∵AD∥BC,EB=AD,
∴四边形ADBE为平行四边形,
∴AE=BD,
∵梯形ABCD是等腰梯形,
∴AC=BD,
∴AE=AC;
(2)∵AD∥BC,AC平分∠BCD,
∴∠ACB=∠DCA=∠DAC,
∴AD=CD=AB,
∵梯形ABCD是等腰梯形,
∴∠ABC=∠BCD=2∠ACB,
∴∠ACB+∠ABC=3∠ACB=90°,
∴∠ACB=30°,
∴BC=2AB=2AD.
考点梳理
考点
分析
点评
专题
等腰梯形的性质;平行四边形的判定与性质;等腰梯形的判定.
(1)连接BD,可证明四边形ADBE为平行四边形,则AE=BD,再根据等腰梯形的性质,可得出结论;
(2)根据题意可得出∠ACB=30°,从而得出BC=2AD.
本题考查了等腰梯形的性质、平行四边形的判定以及角平分线的性质,是重点内容,要熟练掌握.
计算题.
找相似题
(2013·上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是( )
(2013·绵阳)下列说法正确的是( )
(2011·朝阳)如图,沿Rt△ABC的中位线DE剪切一刀后,用得到的△ADE和四边形DBCE拼图,下列图形:①平行四边形;②菱形;③矩形;④等腰梯形.一定能拼出的是( )
(2009·伊春)下列说法正确的是( )
(2009·巴中)下列命题是真命题的是( )