答案
解:过D作DG垂直BC于G,过C作∠DCF为90度交AB的延长线于F,
∵AD∥BC,∠ABC=90°,DG⊥BC,
∴∠ABC=∠DGB=∠A=90°,
∴四边形ADGB是矩形,
∴AB=DG=BC,∠DGC=90°=∠FBC,
∵∠DCF=90°,
∴∠DCG+∠CDG=90°,∠DCG+∠BCF=90°,
∴∠CDG=∠BCF,
∵在△DCG和△FBC中
,
∴△DCG≌△FBC,
∴DC=CF,
∵∠DCE=45°,∠DCF=90°,
∴∠ECF=90°-45°=45°=∠DCE,
∵在△DCE和△FCE中
,
∴△DCE≌△FCE,
∴DE=EF,
设DE=x,AE=
AB=6,
∵AD=BG=12-CG=12-BF=12-(EF-6)=18-EF=18-x,
∴在Rt△EAD中,由勾股定理得:6
2+(18-x)
2=x
2解得:DE=x=10.

解:过D作DG垂直BC于G,过C作∠DCF为90度交AB的延长线于F,
∵AD∥BC,∠ABC=90°,DG⊥BC,
∴∠ABC=∠DGB=∠A=90°,
∴四边形ADGB是矩形,
∴AB=DG=BC,∠DGC=90°=∠FBC,
∵∠DCF=90°,
∴∠DCG+∠CDG=90°,∠DCG+∠BCF=90°,
∴∠CDG=∠BCF,
∵在△DCG和△FBC中
,
∴△DCG≌△FBC,
∴DC=CF,
∵∠DCE=45°,∠DCF=90°,
∴∠ECF=90°-45°=45°=∠DCE,
∵在△DCE和△FCE中
,
∴△DCE≌△FCE,
∴DE=EF,
设DE=x,AE=
AB=6,
∵AD=BG=12-CG=12-BF=12-(EF-6)=18-EF=18-x,
∴在Rt△EAD中,由勾股定理得:6
2+(18-x)
2=x
2解得:DE=x=10.