试题
题目:
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )
A.
3
2
3
B.2
C.3
D.
2
3
答案
C
解:设AD=x,在Rt△ACD中,由勾股定理,得
AC=
x
2
+
(
3
)
2
∵AD∥BC,
∴∠DAC=∠ACB,
又∵∠ADC=∠BAC=90°,
∴△ABC∽△DCA,
∴
AB
CD
=
AC
AD
,即
2
3
=
x
2
+
(
3
)
2
x
,
解得x=3(舍去负值),即AD=3,故选C.
考点梳理
考点
分析
点评
直角梯形.
设所求边AD=x,利用勾股定理求AC,再根据条件证明△ABC∽△DCA,利用相似三角形对应边的比相等,列方程求x即可.
本题考查了勾股定理,相似三角形的性质在梯形中的运用.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2012·佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=
5
:3;⑤S
△EPM
=
1
8
S
梯形ABCD
,正确的个数有( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )