试题
题目:
四边形ABCD是直角梯形,∠BAD=135°,∠C=90°,AD=
10
,AB=9,求点A、B、C、D的坐标.
答案
解:∵∠BAD=135°,
∴∠DAO=180°-∠BAD=180°-135°=45°,
∵∠AOD=90°,
∴∠ADO=45°,
∴OA=OD=AD·sin45°=
10
×
2
2
=
5
,
∴A(-
5
,
5
),D(0,
5
),
∵AB=9,
∴OB=AB+OA=9+
5
,
∴B(-9-
5
,0),
∵四边形ABCD是直角梯形,
∴∠C=∠CBA=∠BOD=90°,
∴四边形OBCD是矩形,
∴CD=OB,BC=OD,
∴C(-9-
5
,
5
).
∴A(-
5
,
5
),B(-9-
5
,0),C(-9-
5
,
5
),D(0,
5
).
解:∵∠BAD=135°,
∴∠DAO=180°-∠BAD=180°-135°=45°,
∵∠AOD=90°,
∴∠ADO=45°,
∴OA=OD=AD·sin45°=
10
×
2
2
=
5
,
∴A(-
5
,
5
),D(0,
5
),
∵AB=9,
∴OB=AB+OA=9+
5
,
∴B(-9-
5
,0),
∵四边形ABCD是直角梯形,
∴∠C=∠CBA=∠BOD=90°,
∴四边形OBCD是矩形,
∴CD=OB,BC=OD,
∴C(-9-
5
,
5
).
∴A(-
5
,
5
),B(-9-
5
,0),C(-9-
5
,
5
),D(0,
5
).
考点梳理
考点
分析
点评
直角梯形;坐标与图形性质.
由∠BAD=135°,即可得△OAD是等腰直角三角形,又由AD=
10
,即可求得OA与OD的长,则可求得A与D的坐标,又由AB=9,即可求得点B的坐标,然后由四边形ABCD是直角梯形,易得四边形OBCD是矩形,则可求得点C的坐标.
此题考查了直角梯形的性质、矩形的判定与性质、等腰直角三角形的性质以及坐标与图形的性质等知识.此题难度不大,解题的关键是得到△AOD是等腰直角三角形,四边形OBCD是矩形,注意数形结合思想的应用.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2012·佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=
5
:3;⑤S
△EPM
=
1
8
S
梯形ABCD
,正确的个数有( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )