试题
题目:
(2010·海淀区一模)已知:如图,在直角梯形ABCD中,AD∥BC,∠DCB=90°,AC⊥BD于点O,DC=2,BC=4,求AD的长.
答案
解:过点D作DE∥AC交BC的延长线于点E,(1分)
∴∠BDE=∠BOC.
∵AC⊥BD于点O,
∴∠BOC=90°.
∴∠BDE=90°,(2分)
∵AD∥BC,
∴四边形ACED为平行四边形,(3分)
∴AD=CE;
∵∠BDE=90°,∠DCB=90°,
∵在Rt△BDE中,CD⊥BE,
∴DC
2
=BC·CE,(4分)
∵DC=2,BC=4,
∴CE=1,
∴AD=1.(5分)
解:过点D作DE∥AC交BC的延长线于点E,(1分)
∴∠BDE=∠BOC.
∵AC⊥BD于点O,
∴∠BOC=90°.
∴∠BDE=90°,(2分)
∵AD∥BC,
∴四边形ACED为平行四边形,(3分)
∴AD=CE;
∵∠BDE=90°,∠DCB=90°,
∵在Rt△BDE中,CD⊥BE,
∴DC
2
=BC·CE,(4分)
∵DC=2,BC=4,
∴CE=1,
∴AD=1.(5分)
考点梳理
考点
分析
点评
直角梯形.
过点D作DE∥AC交BC的延长线于点E,通过证明四边形ACED为平行四边形,可得AD=CE,据勾股定理可得DC与BC、CE的关系,即可得AD的长.
本题主要考查直角梯形的性质,涉及到勾股定理、平行四边形的性质等知识点,需要同学们灵活掌握.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2012·佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=
5
:3;⑤S
△EPM
=
1
8
S
梯形ABCD
,正确的个数有( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )