直角梯形;全等三角形的判定与性质;勾股定理;平行四边形的判定与性质;正方形的判定与性质.
(1)根据垂直与∠BAC=90°求出EF∥AB,然后根据平行四边形的定义证明即可;
(2)根据等腰直角三角形的性质求出AC的长与∠ACD=45°,再根据两直线平行,内错角相等求出∠ACB=45°,从而判定△ABC,△OFC都是等腰直角三角形,根据等腰直角三角形的性质求出BC,根据平行四边形的对边平行且相等求出BF,然后求出CF,再根据等腰直角三角形的性质求出OF即可;
(3)过P作PR⊥BC,垂足为R,作PS⊥DC,垂足为S,然后证明四边形PRCS是正方形,再根据同角的余角相等求出MPR=∠KPS,然后利用“角边角”证明△MPR≌△KP,根据全等三角形对应边相等可得MP=KP,SK=MR,根据点M是FC的中点求出MC的长,P是AC的中点求出PC的长,然后根据等腰直角三角形的性质求出PR=RC=3,从而得到MR=1,再根据全等三角形对应边相等得到SK的长,从而可以求出CK,利用勾股定理列式求出PK,然后求出比值即可.
本题考查了直角梯形,全等三角形的判定与性质,平行四边形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,正方形的判定与性质,题目比较复杂,难度较大.
几何综合题.