试题

题目:
青果学院(2011·苏州)如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
答案
(1)证明:∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,∠A=90°,
∴∠A=∠CEB,
在△ABD和△ECB中,
∵∠A=∠CEB,AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠BCE,
又∵BC=BD
∴△ABD≌△ECB;青果学院

(2)解:∵∠DBC=50°,BC=BD,
∴∠EDC=
1
2
(180°-50°)=65°,
又∵CE⊥BD,
∴∠CED=90°,
∴∠DCE=90°-∠EDC=90°-65°=25°.
(1)证明:∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,∠A=90°,
∴∠A=∠CEB,
在△ABD和△ECB中,
∵∠A=∠CEB,AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠BCE,
又∵BC=BD
∴△ABD≌△ECB;青果学院

(2)解:∵∠DBC=50°,BC=BD,
∴∠EDC=
1
2
(180°-50°)=65°,
又∵CE⊥BD,
∴∠CED=90°,
∴∠DCE=90°-∠EDC=90°-65°=25°.
考点梳理
直角梯形;全等三角形的判定与性质.
(1)因为这两个三角形是直角三角形,BC=BD,因为AD∥BC,还能推出∠ADB=∠EBC,从而能证明:△ABD≌△ECB.
(2)因为∠DBC=50°,BC=BD,可求出∠BDC的度数,进而求出∠DCE的度数.
本题考查了全等三角形的判定和性质,以及直角梯形的性质,直角梯形有两个角是直角,有一组对边平行.
找相似题