试题
题目:
(2003·滨州)己知AD是直角梯形ABCD的高,CD=CB=2AB,延长上底到点F使延长的部分的长等于上底长.那么C、D、F与上底的其中一个顶点构成的四边形( )
A.一定是矩形
B.一定是菱形
C.一定是梯形
D.是矩形或菱形
答案
D
解:若延长AB至F,则根据有一个角是直角的平行四边形,可以判定是矩形;
若延长BA至F,则根据有一组邻边相等的平行四边形是菱形,可以判定是菱形.
故选D.
考点梳理
考点
分析
点评
专题
直角梯形;矩形的判定.
根据矩形的判定和菱形的判定.
矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形.
(2)有三个角是直角的四边形是矩形.
(3)对角线互相平分且相等的四边形是矩形.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:
①定义;
②四边相等;
③对角线互相垂直平分.
压轴题.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2012·佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=
5
:3;⑤S
△EPM
=
1
8
S
梯形ABCD
,正确的个数有( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )