试题

题目:
青果学院(2011·潍坊)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是(  )



答案
C
解:易证△BCF≌△DCE(SAS),
∴∠FBC=∠EDC,BF=ED;
∴△BPE≌△DPF(AAS),
∴BP=DP,
∴△BPC≌△DPC(SSS),
∴∠BCP=∠DCP,即A正确;
又∵AD=BE且AD∥BE,
∴四边形ABED为平行四边形,B正确;
∵BF=ED,AB=ED,
∴AB=BF,即D正确;
综上,选项A、B、D正确.
故选C.
考点梳理
直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.
本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE(SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;
本题考查了等腰三角形、平行四边形和全等三角形的判定,熟记以上图形的性质,并能灵活运用其性质,是解答本题的关键,本题综合性较好.
证明题;几何综合题;压轴题.
找相似题