试题
题目:
(2011·福州)如图,直角梯形ABCD中,AD∥BC,∠C=90°,则∠A+∠B+∠C=
270
270
度.
答案
270
解:∵AD∥BC,
∴∠A+∠B=180°,
∵∠C=90°,
∴∠A+∠B+∠C=180°+90°=270°,
故答案为:270.
考点梳理
考点
分析
点评
专题
直角梯形;平行线的性质.
根据平行线的性质得到∠A+∠B=180°,由已知∠C=90°,相加即可求出答案.
本题主要考查对直角梯形,平行线的性质等知识点的理解和掌握,能求出∠A+∠B的度数是解此题的关键.
计算题.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2012·佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=
5
:3;⑤S
△EPM
=
1
8
S
梯形ABCD
,正确的个数有( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )