试题
题目:
(2012·景宁县模拟)如图1,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿折线B→C→D→A运动,点P运动的速度为2个单位长度/秒,若设点P运动的时间为x秒,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积为( )
A.16
B.48
C.24
D.64
答案
B
解:根据图2可知当点P在CD上运动时,△ABP的面积不变,与△ABC面积相等;
且不变的面积是在x=3,x=7之间;
可知当x=3时,点P恰好到点C处,
此时P点运动3秒,即BC=6;
同理可得CD=8,AD=10;
过点D作DN⊥AB于点N,则有DN=BC=6,BN=CD=8,
在Rt△ADN中,AN=
AD
2
-
DN
2
=8,
所以AB=BN+AN=8+8=16,
所以△ABC的面积为
1
2
AB·BC=
1
2
×16×6=48.
故选B.
考点梳理
考点
分析
点评
专题
动点问题的函数图象;三角形的面积;直角梯形.
根据题意,分析P的运动路线,分2个阶段分别讨论,可分别得处DC、BC和AD的值,同时过点D作DN⊥AB于点N,即可得出AN的长度,进而可得△ABC的面积,即可得出答案.
本题主要考查了动点问题的函数图象问题与三角形面积的求法等知识点,要求学生能够要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
压轴题.
找相似题
(2012·台湾)如图,梯形ABCD中,∠DAB=∠ABC=90°,E点在CD上,且DE:EC=1:4.若AB=5,BC=4,AD=8,则四边形ABCE的面积为何?( )
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2012·佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=
5
:3;⑤S
△EPM
=
1
8
S
梯形ABCD
,正确的个数有( )
(2010·双鸭山)直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,AD=DC=2
2
,则BC的长为( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )