答案
B
解:由题意可知△ACD和△ACE全等,故①正确;
又因为∠BCE=15°,所以∠ACE=45°-15°=30°,所以∠ECD=60°,所以△CDE是等边三角形,故②正确;
∵AE=AE,△ACD≌△ACE,△CDE是等边三角形,

∴∠EAH=∠ADH=45°,AD=AE,
∴AH=EH=DH,AH⊥DE,
假设AH=EH=DH=x,
∴AE=
x,CE=2x,
∴CH=
x,
∴AC=(1+
)x,
∵AB=BC,
∴AB
2+BC
2=[(1+
)x]
2,
解得:AB=
x,
BE=
x,
∴
=
=
,
故③错误;
④∵Rt△EBC与Rt△EHC共斜边EC,
∴S
△EBC:S
△EHC=
(BE×BC):
(HE×HC)
=
(EC×sin15°×EC×cos15°):
(EC×sin30°×EC×cos30°)
=
(EC×sin30°):
(EC×sin60°)
=
EC:
EC=1:
=EH:CH=AH:CH,故④正确.
故其中结论正确的是①②④.
故选B.