试题
题目:
(2012·绵阳)某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.
方案一:每千克种子价格为4元,无论购买多少均不打折;
方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.
(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额y(元)之间的函数关系式;
(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.
答案
解:(1)方案一的函数是:y
1
=4x,
方案二的函数是:y=
5x(0<x≤3)
15+3.5(x-3)(x>3)
;
(2)当x≤3时,选择方案一;
当x>3时,
4x>15+3.5(x-3),
解得:x>9,
4x=15+3.5(x-3),
解得:x=9;
当4x<15+3.5(x-3),
解得:0<x<9.
故当0<x<9时,选择方案一;
当x=9时,选择两种方案都可以;
当x>9时,选择方案二.
解:(1)方案一的函数是:y
1
=4x,
方案二的函数是:y=
5x(0<x≤3)
15+3.5(x-3)(x>3)
;
(2)当x≤3时,选择方案一;
当x>3时,
4x>15+3.5(x-3),
解得:x>9,
4x=15+3.5(x-3),
解得:x=9;
当4x<15+3.5(x-3),
解得:0<x<9.
故当0<x<9时,选择方案一;
当x=9时,选择两种方案都可以;
当x>9时,选择方案二.
考点梳理
考点
分析
点评
一次函数的应用.
(1)根据付款金额=数量×单价,即可表示出方案一与方案二中,当x≤3时的函数关系式;当x≥3时,金额=3千克内的金额+超过3千克部分的金额,即可写出函数解析式;
(2)当x≤3时,选择方案一;
当x>3时,比较5x与15+3.5(x-3)的大小关系,即可确定x的范围,从而进行判断.
此题是一道实际问题,在购物时经常遇到.虽然有许多购物方案,但是需要选择最省钱的一种,这也体现了数学中的最优化思想.
找相似题
(2013·威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l
1
,l
2
分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
(2013·南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:
(1)他们都行驶了20km;
(2)小陆全程共用了1.5h;
(3)小李与小陆相遇后,小李的速度小于小陆的速度;
(4)小李在途中停留了0.5h.
其中正确的有( )
(2013·牡丹江)若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是( )
(2012·乌鲁木齐)为使我市冬季“天更蓝、房更暖”、政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:
①甲队每天挖100米;
②乙队开挖两天后,每天挖50米;
③当x=4时,甲、乙两队所挖管道长度相同;
④甲队比乙队提前2天完成任务.
正确的个数有( )
(2008·莆田)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是( )