试题
题目:
某市采用价格调控的手段达到节约用水的目的,制定如下用水收费标准:每户每月用水不超过6m
3
,水费按a元/m
3
收费;若超过
6m
3
,6m
3
以内的仍按a元/m
3
收费,超过6m
3
的部分以b元/m
3
收费.某户居民5、6月份用水量和水费如下表:
月份
用水量(m
3
)
水费(元)
5
5
7.5
6
9
27
设该用户每月用水量为xm
3
,应交水费y元.
(1)求出a,b的值;
(2)写出用水量不超过6m
3
和超过6m
3
时,y与x之间的函数关系式;
(3)若该用户7月份用水量为8m
3
,他应交多少元水费?
答案
解:(1)依照题意,
当x≤6时,y=ax;
当x>6时,y=6a+b(x-6),
由已知,得7.5=5a,①
27=6a+3b,②
由①得a=1.5;把a=1.5代入②得b=6,
(2)由(1)得出:y=1.5x(x≤6),
y=9+6(x-6)=6x-27;(x>6)
(3)将x=8代入y=6x-27(x>6)得y=6×8-27=21(元),
故该用户7月份用水量为8m
3
,他应交21元水费.
解:(1)依照题意,
当x≤6时,y=ax;
当x>6时,y=6a+b(x-6),
由已知,得7.5=5a,①
27=6a+3b,②
由①得a=1.5;把a=1.5代入②得b=6,
(2)由(1)得出:y=1.5x(x≤6),
y=9+6(x-6)=6x-27;(x>6)
(3)将x=8代入y=6x-27(x>6)得y=6×8-27=21(元),
故该用户7月份用水量为8m
3
,他应交21元水费.
考点梳理
考点
分析
点评
一次函数的应用.
(1)依照题意,当x≤6时,y=ax;当x>6时,y=6a+b(x-6),分别带入数据求出即可;
(2)根据a,b的值,可得解析式;
(3)实质是求:当x=8时,带入y=6x-27求出即可.
此题主要考查了利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
找相似题
(2013·威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l
1
,l
2
分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
(2013·南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:
(1)他们都行驶了20km;
(2)小陆全程共用了1.5h;
(3)小李与小陆相遇后,小李的速度小于小陆的速度;
(4)小李在途中停留了0.5h.
其中正确的有( )
(2013·牡丹江)若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是( )
(2012·乌鲁木齐)为使我市冬季“天更蓝、房更暖”、政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:
①甲队每天挖100米;
②乙队开挖两天后,每天挖50米;
③当x=4时,甲、乙两队所挖管道长度相同;
④甲队比乙队提前2天完成任务.
正确的个数有( )
(2008·莆田)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是( )