题目:
(2005·上海)在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆

心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F.
(1)如图,求证:△ADE∽△AEP;
(2)设OA=x,AP=y,求y关于x的函数解析式,并写出它的定义域;
(3)当BF=1时,求线段AP的长.
答案

(1)证明:连接OD,
∵AP切半圆于D,∠ODA=∠PED=90°,
又∵OD=OE,
∴∠ODE=∠OED,
∴∠ADE=∠ODE+∠ODA,
∠AEP=∠OED+∠PED,
∴∠ADE=∠AEP,
又∵∠A=∠A,
∴△ADE∽△AEP;
(2)解:∵△AOD∽△ACB,
∴
==,
∵AB=4,BC=3,∠ABC=90°,
∴根据勾股定理,得AC=
=5,
∴OD=
OA,AD=
OA,
∵△ADE∽△AEP,
∴
==
,
∵AP=y,OA=x,AE=OE+OA=OD+OA=
OA,
∴
==
=
,
则y=
x(0<x≤
);
(3)解:情况1:y=
x,BP=4-AP=4-
x,
∵△PBF∽△PED,
∴
=,
又∵△ADE∽△AEP,
∴
=,
∴
=,
∴
=,
解得:x=
,
∴AP=
x=2.
情况2:如图,半圆O的半径R较大时,EP交AB延长线于点P,P在B上方;交BC于点F,F在BC之间:
CF=BC-BF=3-1=2,

过点E作EG⊥BC,
则△CGE∽△CBA,
则
=
=
=
,
解得,EG=
,CG=
,
FG=FC-CG=2-
=
,
PB:EG=FB:FG,
PB=
÷
=2,
AP=AB+PB=4+2=6.
故线段AP的长为2或6.

(1)证明:连接OD,
∵AP切半圆于D,∠ODA=∠PED=90°,
又∵OD=OE,
∴∠ODE=∠OED,
∴∠ADE=∠ODE+∠ODA,
∠AEP=∠OED+∠PED,
∴∠ADE=∠AEP,
又∵∠A=∠A,
∴△ADE∽△AEP;
(2)解:∵△AOD∽△ACB,
∴
==,
∵AB=4,BC=3,∠ABC=90°,
∴根据勾股定理,得AC=
=5,
∴OD=
OA,AD=
OA,
∵△ADE∽△AEP,
∴
==
,
∵AP=y,OA=x,AE=OE+OA=OD+OA=
OA,
∴
==
=
,
则y=
x(0<x≤
);
(3)解:情况1:y=
x,BP=4-AP=4-
x,
∵△PBF∽△PED,
∴
=,
又∵△ADE∽△AEP,
∴
=,
∴
=,
∴
=,
解得:x=
,
∴AP=
x=2.
情况2:如图,半圆O的半径R较大时,EP交AB延长线于点P,P在B上方;交BC于点F,F在BC之间:
CF=BC-BF=3-1=2,

过点E作EG⊥BC,
则△CGE∽△CBA,
则
=
=
=
,
解得,EG=
,CG=
,
FG=FC-CG=2-
=
,
PB:EG=FB:FG,
PB=
÷
=2,
AP=AB+PB=4+2=6.
故线段AP的长为2或6.