试题

题目:
青果学院如图,在等腰梯形ABCD中,AD∥BC,AD=2,BC=6,以A为圆心,AD为半径的圆与BC边相切于点M,于AB交于点E,将扇形A-DME剪下围成一个圆锥,则圆锥的高为
55
4
55
4

答案
55
4

青果学院解:连接AM,过点D作DF⊥BC,垂足为F,
∴四边形ADFM为矩形,
∴FM=AD,
∵AD=2,
∴FM=2,
∵AB=CD,BC=6,
∴BM=CF=
1
2
(BC-MF)=
1
2
×4=2,
∴∠BAM=45°,
∴∠BAD=135°,
∴l=
135π×2
180
=
2

∴2πr=
2

∴r=
3
4

∴圆锥的高h=
22-(
3
4
)
2
=
55
4

故答案为
55
4
考点梳理
圆锥的计算;等腰梯形的性质;切线的性质.
连接AM,过点D作DF⊥BC,垂足为F,可求得∠BAD=135°,根据扇形的弧长等于圆锥的底面周长.从而得出圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.
本题考查了等腰梯形的性质、切线的性质、圆锥的计算,解题的关键是首先利用圆锥的底面周长等于圆锥的弧长求得圆锥的底面半径.
找相似题