试题

题目:
青果学院如图所示,AP为圆O的切线,P为切点,AO交圆O于点B,若∠A=40°,则∠APB等于
25°
25°

答案
25°

青果学院解:如图,连接OP,
∵AP为圆O的切线,P为切点,
∴∠OPA=90°,
∴∠O=90°-∠A=50°,
∵OB=OP,
∴∠OPB=∠OBP=(180°-∠O)÷2=65°,
∴∠APB=90°-∠OPB=25°.
故答案为25°.
考点梳理
切线的性质.
如图,连接OP,由于AP为圆O的切线可以得到∠OPA=90°,由此可以求出∠O的度数;又由OB=OP可以求出∠OPB=∠OBP的度数,然后即可求出∠APB的度数.
本题利用了切线的性质,直角三角形的性质,等边对等角,三角形内角和定理求解,综合性比较强.
找相似题