题目:
            
(2013·田阳县一模)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,连接BF.
(1)证明:AF平分∠BAC;
(2)作∠ABC的角平分线交AF于点D,(尺规作图,保留作图痕迹,不写作法)
(3)若EF=2,DE=3,求tan∠EBF的值. 
                    
 
        
            答案 
            
(1)证明:连接OF,
∵FH是⊙O的切线,
∴OF⊥FH,
∵FH∥BC,
∴OF⊥BC,
∴
=
,
∴∠BAF=∠CAF,
∴AF平分∠BAC;
(2)如图:BF即是∠ABC的角平分线;

(3)解:∵∠ABD=∠CBD,∠BAF=∠CAF=∠CBF,且∠FBD=∠CBD+∠CBF,∠BDF=∠ABD+∠BAF,
∴∠FBD=∠BDF,
∴BF=DF=EF+DE=2+3=5,
∵∠AFB=∠BFE(公共角),∠CBF=∠BAF,
∴△BEF∽△ABF,
∴BF:AF=EF:BF,
∴AF=
=
,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴tan∠EBF=tan∠BAF=
=
=
.
            

(1)证明:连接OF,
∵FH是⊙O的切线,
∴OF⊥FH,
∵FH∥BC,
∴OF⊥BC,
∴
=
,
∴∠BAF=∠CAF,
∴AF平分∠BAC;
(2)如图:BF即是∠ABC的角平分线;

(3)解:∵∠ABD=∠CBD,∠BAF=∠CAF=∠CBF,且∠FBD=∠CBD+∠CBF,∠BDF=∠ABD+∠BAF,
∴∠FBD=∠BDF,
∴BF=DF=EF+DE=2+3=5,
∵∠AFB=∠BFE(公共角),∠CBF=∠BAF,
∴△BEF∽△ABF,
∴BF:AF=EF:BF,
∴AF=
=
,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴tan∠EBF=tan∠BAF=
=
=
.