题目:
已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.
答案

解:(1)点D(3,4)在⊙O上,
∴⊙O的半径r=OD=5;
如图,连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,
∴∠HAO=∠OHQ,
∴sin∠HAO=sin∠OHQ=
=
;
(2)解:不变.
如图,设点D关于x轴的对称点为H,连接HD交OP于Q,则HD⊥OP,
又DE=DF,
∴DH平分∠BDC,
∴
=
.
∴连接OH,则OH⊥BC,
在Rt△OKG与Rt△OHQ中,
∵∠OKG=∠OEH=90°,∠HOG=∠HOG,
∴∠CGO=∠OHQ,
∴sin∠CGO=sin∠OHQ=
=
,
所以不变.

解:(1)点D(3,4)在⊙O上,
∴⊙O的半径r=OD=5;
如图,连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,
∴∠HAO=∠OHQ,
∴sin∠HAO=sin∠OHQ=
=
;
(2)解:不变.
如图,设点D关于x轴的对称点为H,连接HD交OP于Q,则HD⊥OP,
又DE=DF,
∴DH平分∠BDC,
∴
=
.
∴连接OH,则OH⊥BC,
在Rt△OKG与Rt△OHQ中,
∵∠OKG=∠OEH=90°,∠HOG=∠HOG,
∴∠CGO=∠OHQ,
∴sin∠CGO=sin∠OHQ=
=
,
所以不变.