答案
(1)证明:

连接OC,
∵AC、AB分别切⊙O于C、B,
∴∠ACO=∠ABO=90°,∠CAO=∠BAO,
∵∠COA+∠ACO+∠CAO=180°,∠BOA+∠BAO+∠OBA=180°,
∴∠COA=∠BOA,
∵OC=OD,
∴∠OCD=∠ODC,
∵∠COA+∠BOA=∠OCD+∠ODC,
∴2∠ODC=2∠AOB,
即∠D=∠AOB,
∴CD∥AO.
(2)解:

连接BC,
∵BD是⊙O直径,
∴∠DCB=∠ABO=90°,
∵∠D=∠AOB,
∴△BCD∽△ABO,
∴
=
,
∴CD·AO=DB·BO=6×3=18.

(3)解:∵CD·AO=18,AO=2CD,
∴CD=3,
∵OC=3=OD=3,
∴△COD是等边三角形,
∴∠OCD=∠ODC=60°,
∴∠COB=120°,
∴弧BC的长是
=2π.
(1)证明:

连接OC,
∵AC、AB分别切⊙O于C、B,
∴∠ACO=∠ABO=90°,∠CAO=∠BAO,
∵∠COA+∠ACO+∠CAO=180°,∠BOA+∠BAO+∠OBA=180°,
∴∠COA=∠BOA,
∵OC=OD,
∴∠OCD=∠ODC,
∵∠COA+∠BOA=∠OCD+∠ODC,
∴2∠ODC=2∠AOB,
即∠D=∠AOB,
∴CD∥AO.
(2)解:

连接BC,
∵BD是⊙O直径,
∴∠DCB=∠ABO=90°,
∵∠D=∠AOB,
∴△BCD∽△ABO,
∴
=
,
∴CD·AO=DB·BO=6×3=18.

(3)解:∵CD·AO=18,AO=2CD,
∴CD=3,
∵OC=3=OD=3,
∴△COD是等边三角形,
∴∠OCD=∠ODC=60°,
∴∠COB=120°,
∴弧BC的长是
=2π.