试题
题目:
(2010·株洲)如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.
求证:(1)∠CAB=∠BOD;
(2)△ABC≌△ODB.
答案
证明:(1)∵AB是⊙O的直径,
∴∠ACB=90°,由∠ABC=30°,
∴∠CAB=60°,
又OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOD=60°,
∴∠CAB=∠BOD.
(2)在Rt△ABC中,∠ABC=30°,得AC=
1
2
AB,
又OB=
1
2
AB,
∴AC=OB,
由BD切⊙O于点B,得∠OBD=90°,
在△ABC和△ODB中,
∴△ABC≌△ODB.
证明:(1)∵AB是⊙O的直径,
∴∠ACB=90°,由∠ABC=30°,
∴∠CAB=60°,
又OB=OC,
∴∠OCB=∠OBC=30°,
∴∠BOD=60°,
∴∠CAB=∠BOD.
(2)在Rt△ABC中,∠ABC=30°,得AC=
1
2
AB,
又OB=
1
2
AB,
∴AC=OB,
由BD切⊙O于点B,得∠OBD=90°,
在△ABC和△ODB中,
∴△ABC≌△ODB.
考点梳理
考点
分析
点评
专题
切线的性质;全等三角形的判定;圆周角定理.
(1)根据直径所对的圆周角是直角及∠ABC=30°可知∠CAB=60°,然后由圆周角定理可知∠AOC=60°,再根据对顶角相等即可解答.
(2)根据直角三角形的性质求出AC=OB,再由ASA定理即可求出△ABC≌△ODB.
本题考查了圆的切线性质、直角三角形的性质、三角形全等的判定方法及圆周角定理的相关知识,有一定的综合性,但难度不大.
证明题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )