试题
题目:
(2009·莆田)已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点
F,连接BD、BE.
(1)仔细观察图形并写出四个不同的正确结论:①
,②
,③
,④
(不添加其它字母和辅助线,不必证明);
(2)∠A=30°,CD=
2
3
3
,求⊙O的半径r.
答案
解:(1)BC⊥AB,AD⊥BD,DF=FE,BD=BE,△BDF≌△BEF,△BDF∽△BAD,∠BDF=∠BEF,∠A=∠E,DE∥BC等;
(2)∵AB是⊙O的直径,
∴∠ADB=90°,
又∵∠A=30°,
∴BD=ABsinA=ABsin30°=
1
2
AB=r;
又∵BC是⊙O的切线,
∴∠CBA=90°,
∴∠C=60°;
在Rt△BCD中,
CD=
2
3
3
,
∴
BD
DC
=
r
2
3
3
=tan60°,
∴r=2.
考点梳理
考点
分析
点评
专题
切线的性质;直角三角形全等的判定;圆周角定理.
(1)由BC是⊙O的切线,DF⊥AB,得∠AFD=∠CBA=90°;根据DE∥BC和垂径定理知,弧BD=弧BE,DF=FE,BD=BE,由等边对等角得∠E=∠EDB;再由圆周角定理得∠A=∠E,可证△BDF≌△BEF,△BDF∽△BAD;
(2)当∠A=30°时BD=r,∠C=60°,再根据Rt△BCD中tan60°可求得r=2.
本题利用了切线的性质,垂径定理,圆周角定理,直角三角形的性质,锐角三角函数的概念求解.
几何综合题;压轴题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )