试题
题目:
(2013·鞍山)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)AC与CD相等吗?为什么?
(2)若AC=2,AO=
5
,求OD的长度.
答案
解:(1)AC=CD,理由为:
∵OA=OB,
∴∠OAB=∠B,
∵直线AC为圆O的切线,
∴∠OAC=∠OAB+∠DAC=90°,
∵OB⊥OC,
∴∠BOC=90°,
∴∠ODB+∠B=90°,
∵∠ODB=∠CDA,
∴∠CDA+∠B=90°,
∴∠DAC=∠CDA,
则AC=CD;
(2)在Rt△OAC中,AC=CD=2,AO=
5
,OC=OD+DC=OD+2,
根据勾股定理得:OC
2
=AC
2
+AO
2
,即(OD+2)
2
=2
2
+(
5
)
2
,
解得:OD=1.
解:(1)AC=CD,理由为:
∵OA=OB,
∴∠OAB=∠B,
∵直线AC为圆O的切线,
∴∠OAC=∠OAB+∠DAC=90°,
∵OB⊥OC,
∴∠BOC=90°,
∴∠ODB+∠B=90°,
∵∠ODB=∠CDA,
∴∠CDA+∠B=90°,
∴∠DAC=∠CDA,
则AC=CD;
(2)在Rt△OAC中,AC=CD=2,AO=
5
,OC=OD+DC=OD+2,
根据勾股定理得:OC
2
=AC
2
+AO
2
,即(OD+2)
2
=2
2
+(
5
)
2
,
解得:OD=1.
考点梳理
考点
分析
点评
专题
切线的性质;勾股定理.
(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;
(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.
此题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.
计算题;压轴题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )