试题
题目:
如图,△ABC中,∠C=90°,以C为圆心的⊙C与AB相切于点D,若AD=2,BD=4,则⊙C的半径为
2
2
2
2
.
答案
2
2
解:连接CD,如图,
∵⊙C与AB相切于点D,
∴CD⊥AB,
∵∠ACD+∠BCD=90°,∠A+∠ACD=90°,
∴∠A=∠BCD,
∴△ACD∽△CBD,
∴
AD
CD
=
CD
BD
,
即CD
2
=AD·BD,
∵AD=2,BD=4,
∴CD=2
2
.
故答案为:2
2
.
考点梳理
考点
分析
点评
切线的性质;相似三角形的判定与性质.
连接CD,则CD⊥AB,可证明△ACD∽△CBD,由相似三角形的性质,求出CD的长即可.
本题考查了切线的性质和相似三角形的判定和性质,是基础知识要熟练掌握.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )