试题
题目:
(2007·厦门)已知:如图,AB是⊙O的弦,点C在
AB
上.
(1)若∠OAB=35°,求∠AOB的度数;
(2)过点C作CD∥AB,若CD是⊙O的切线,求证:点C是
AB
的中点.
答案
(1)解:∵OA=OB,∠OAB=35°,
∴∠OBA=∠OAB=35°.
∴∠AOB=110°.
(2)证明:连接OC,
∵CD为⊙O的切线,
∴OC⊥CD又AB∥CD,
∴OC⊥AB.
∴
AC
=
BC
.
即C是
AB
的中点.
(1)解:∵OA=OB,∠OAB=35°,
∴∠OBA=∠OAB=35°.
∴∠AOB=110°.
(2)证明:连接OC,
∵CD为⊙O的切线,
∴OC⊥CD又AB∥CD,
∴OC⊥AB.
∴
AC
=
BC
.
即C是
AB
的中点.
考点梳理
考点
分析
点评
专题
切线的性质;圆心角、弧、弦的关系.
(1)根据等边对等角和三角形的内角和定理进行计算;
(2)连接OC,根据切线的性质、平行线的性质和垂径定理进行证明.
此题综合运用了切线的性质、平行线的性质和垂径定理进行证明.
计算题;证明题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )