试题

题目:
青果学院如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F
(1)求证:OE∥AB;
(2)求证:EH=
1
2
AB.
答案
(1)证明:在等腰梯形ABCD中,AD∥BC.
∴AB=DC,∠B=∠C,
∵OE=OC,
∴∠OEC=∠C,
∴∠B=∠OEC,
∴OE∥AB;

青果学院(2)证明:连接OF,
∵⊙O与AB切于点F,
∴OF⊥AB,
∵EH⊥AB,
∴OF∥EH,
又∵OE∥AB,
∴四边形OEHF为平行四边形,
∴EH=OF,
∵OF=
1
2
CD,AB=CD,
∴EH=
1
2
AB.
(1)证明:在等腰梯形ABCD中,AD∥BC.
∴AB=DC,∠B=∠C,
∵OE=OC,
∴∠OEC=∠C,
∴∠B=∠OEC,
∴OE∥AB;

青果学院(2)证明:连接OF,
∵⊙O与AB切于点F,
∴OF⊥AB,
∵EH⊥AB,
∴OF∥EH,
又∵OE∥AB,
∴四边形OEHF为平行四边形,
∴EH=OF,
∵OF=
1
2
CD,AB=CD,
∴EH=
1
2
AB.
考点梳理
切线的性质;等腰梯形的性质;圆周角定理.
(1)根据等腰梯形的性质得出∠OEC=∠C,即可得出∠B=∠OEC,进而得出答案;
(2)利用切线的性质,可证出四边形OEHF为平行四边形,进而得出EH=OF=
1
2
CD=
1
2
AB.
此题考查了等腰梯形的性质、切线的性质、平行线的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
证明题.
找相似题