试题
题目:
如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为( )
A.
12
7
B.
7
12
C.
7
2
D.
2
3
答案
A
解:连接OE,OD,
∵圆O切AC于E,圆O切AB于D,
∴∠OEA=∠ODA=90°,
∵∠A=90°,
∴∠A=∠ODA=∠OEA=90°,
∵OE=OD,
∴四边形ADOE是正方形,
∴AD=AE=OD=OE,
设OE=AD=AD=OD=R,
∵∠A=90°,∠OEC=90°,
∴OE∥AB,
∴△CEO∽△CAB,
同理△BDO∽△BAC,
∴△CEO∽△ODB,
∴
OE
BD
=
CE
OD
,
即
R
4-R
=
3-R
R
,
解得:R=
12
7
,
故选A.
考点梳理
考点
分析
点评
专题
切线的性质;正方形的判定与性质;相似三角形的判定与性质.
连接OE,OD,求出四边形ADOE是正方形,推出AE=AD=OD=OE,设OE=AD=AD=OD=R,根据切线性质得出OE∥AB,OD∥AC,推出△CEO∽△ODB,得出比例式,代入求出即可.
本题考查了切线的性质,相似三角形的性质和判定,正方形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目具有一定的代表性,难度也适中.
证明题;压轴题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )