试题

题目:
青果学院如图,如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.若KG2=KD·GE,sinE=
3
5
,AK=2
5
,FG长度是(  )



答案
A
青果学院解:(1)如答图1,连接OG.
∵EG为切线,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
连接GD,如答图2所示.
∵KG2=KD·GE,即
KG
GE
=
KD
KG

又∠KGE=∠GKE,青果学院
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
连接OG,OC,如答图3所示.
sinE=sin∠ACH=
3
5
,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2
即(3t)2+t2=(2
5
2,解得t=
2
青果学院
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2
即(r-3t)2+(4t)2=r2,解得r=
25
2
6

∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=
25
2
6
,tan∠OFG=tan∠CAH=
CH
AH
=
4
3

∴FG=
OG
tan∠OFG
=
25
2
6
4
3
=
25
2
8

故选A.
考点梳理
切线的性质;相似三角形的判定与性质.
如答图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;如答图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD·GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;
如答图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.
此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.
压轴题.
找相似题