试题
题目:
如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠APB=30°,则∠ACB=( )
A.60°
B.75°
C.105°
D.120°
答案
C
解:如图,连接AO,OB,
∵PA、PB分别切圆O于A、B两点,
∴∠PAO=∠PBO=90°,
∴∠AOB=180°-∠P=150°,
设点E是优弧AB上一点,
由圆周角定理知,∠E=75°,
由圆内接四边形的对角互补知,
∠ACB=180°-∠E=105°.
故选C.
考点梳理
考点
分析
点评
专题
切线的性质;圆周角定理;圆内接四边形的性质.
如图,连接AO,OB,PA、PB分别切圆O于A、B两点,可以知道∠PAO=∠PBO=90°,由此可以求出∠AOB的度数;设点E是优弧AB上一点,由圆周角定理知,∠E=75°,由圆内接四边形的对角互补即可求出∠ACB的度数.
本题利用了切线的性质,四边形的内角和为360度,圆周角定理,圆内接四边形的性质求解.
压轴题.
找相似题
(2013·济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
(2013·贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是( )
(2013·桂林)如图,菱形ABCD的对角线BD、AC分别为2、2
3
,以B为圆心的弧与AD、DC相切,则阴影部分的面积是( )
(2012·西藏)如图,AB切⊙O于点B,延长AO交⊙O于点C,连接BC.若∠A=40°,则∠C=( )
(2012·黔西南州)如图,⊙O的半径为2,点A的坐标为(2,2
3
),直线AB为⊙O的切线,B为切点.则B点的坐标为( )