试题

题目:
青果学院(2010·越秀区一模)如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积等于(  )



答案
A
青果学院解:延长CB,做AD⊥CB,交于一点D,
∵△OCB与△ACB同底等高面积相等,
∴图中阴影部分的面积等于扇形OCB的面积,
∵A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B
∴BO⊥AB,
∴∠OAB=30°,
∴∠AOB=60°,
∵弦BC∥OA,
∴∠OBC=60°,
∴△OBC是等边三角形,
∴图中阴影部分的面积等于扇形OCB的面积为:
60×π×22
360
=
2
3
π.
故选:A.
考点梳理
扇形面积的计算;切线的性质.
根据三角形面积求法,得出△OCB与△ACB同底等高面积相等,再利用切线的性质得出∠COB=60°,利用扇形面积求出即可.
此题主要考查了切线的性质以及三角形面积求法和扇形的面积公式等知识,根据已知得出△OCB与△ACB面积相等以及∠COB=60°是解决问题的关键.
找相似题